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Introduction

Let K be a field, E = K 〈e1, . . . , en〉 the exterior algebra of a K -vector space
V with basis e1, . . . , en.

It is well–known that, even if E is not commutative, it behaves like a
commutative local ring ([Bruns and Herzog, 1996]).

We work on the category M of finitely generated Z-graded left and right
E -modules M.

If M ∈M, we denote by βi,j(M) the graded Betti numbers of M and by
µi,j(M) the graded Bass numbers of M, associate with projective and
injective minimal resolution of M, respectively.

Our aim is to give upper bounds for such invariants.
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Introduction

Ideas and techniques used in this work generalize the ones in
[Aramova et al., 1997], [Aramova et al., 1998]. In those papers, in fact,
the results concern ideals of an exterior algebra.

Given a stable ideal I ⊂ E one can deduce explicit formulas for the graded
Betti numbers. These formulas allow a comparison of the graded Betti
numbers of a stable ideal and its corresponding lexsegment ideal.

Since the exterior algebra is self-dual, there exists a dual version to each of
these theorems. So, one has analogous comparison of the graded Bass
numbers of a stable ideal and its corresponding lexsegment ideal.

A fundamental tool also for our pourpose is the class of lexicographic
submodules. Such a class of monomial submodules has been deeply studied
by the authors of this paper in [Amata and Crupi, 2018b],
[Amata and Crupi, 2018c]. Some results on a particular class of graded
E -modules has already published in [Amata and Crupi, 2018a].
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Exterior Algebra

Definitions

Let K be a field. We denote by E = K 〈e1, . . . , en〉 the exterior algebra of a
K -vector space V with basis e1, . . . , en.

For any subset σ = {i1, . . . , id} of {1, . . . , n}, with i1 < i2 < · · · < id , we
write eσ = ei1 ∧ . . . ∧ eid , and call eσ a monomial of degree d . We set
eσ = 1, if σ = ∅.

We put fg = f ∧ g for any two elements f and g in E . An element f ∈ E is
called homogeneous of degree j if f ∈ Ej , where Ej =

∧j V .

We define supp(eσ) = σ = {j : ej divides eσ} and
m(eσ) = max{i : i ∈ supp(eσ)}. Moreover, we set m(eσ) = 0 if eσ = 1.

Example

Let E = K 〈e1, e2, e3, e4, e5〉. If we consider the monomial eσ = e1e2e4, then
supp(eσ) = {1, 2, 4} and m(eσ) = 4.
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Exterior Ideals

Definitions

If I is a graded ideal in E , then the function HI : N→ N given by
HI (d) = dimK Id (i ≥ 0) is called the Hilbert function of I .

Let I be a monomial ideal of E . I is called stable if for each monomial
eσ ∈ I and each j < m(eσ) one has ejeσ\{m(eσ)} ∈ I .

I is called strongly stable if for each monomial eσ ∈ I and each j ∈ σ one
has eieσ\{j} ∈ I , for all i < j .

Let >lex the lexicographic order on the set of all monomials of degree d ≥ 1
in E . A monomial ideal I of E is called a lexsegment ideal if for all
monomials u ∈ I and all monomials v ∈ E with deg u = deg v and v >lex u,
then v ∈ I .
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Exterior Ideals

Examples

Let E = K 〈e1, e2, e3, e4, e5〉. Consider the monomial ideal of E

I = (e2e3, e3e4e5).

The smallest stable ideal of E containing I is

Is = (e1e2, e2e3, e1e3e4, e3e4e5).

The smallest strongly stable ideal of E containing Is is

Iss = (e1e2, e1e3, e2e3, e1e4e5, e2e4e5, e3e4e5).

The lexicographic ideal with the same Hilbert function of I is

I lex = (e1e2, e1e3e4).
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Exterior Ideals

Considerations

If I is a graded ideal of E , then Gin(I ) (generic initial ideal) is a strongly stable
ideal of E with the same Hilbert function as I and, moreover, one has that
HE/I = HE/Gin(I ) and βi,j(E/I ) ≤ βi,j(E/Gin(I )) for all i , j .
So we may assume I itself is a stable ideal without changing the Hilbert function.

Kruskal–Katona theorem

A formulation of this theorem can be done as follows:
Let I ⊂ E be a graded ideal. Then β0,j(I ) ≤ β0,j(I lex), for all j .

“Higher” Kruskal–Katona theorem

Let I ⊂ E be a graded ideal. Then βi,j(I ) ≤ βi,j(I lex), for all i , j .

Dual “Higher” Kruskal–Katona theorem

Let I ⊂ E be a graded ideal. Then µi,j(E/I ) ≤ µi,j(E/I
lex), for all i , j .
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Exterior Modules

Definitions

For all M ∈M, the function HM : Z→ Z given by HM(d) = dimK Md is
called the Hilbert function of M.

Let F ∈M be a free module with homogeneous basis g1, . . . , gr , where
deg(gi ) = fi , i = 1, . . . , r , with f1 ≤ f2 ≤ · · · ≤ fr . Then F = ⊕r

i=1Egi .

M ∈M is monomial if M is a submodule generated by monomials of F :
M = I1g1 ⊕ · · · ⊕ Irgr , with Ii a monomial ideal of E , for each i .

A monomial submodule M = ⊕r
i=1Iigi of F is (strongly) stable if Ii is a

(strongly) stable ideal of E , for each i , and (e1, . . . , en)fi+1−fi Ii+1 ⊆ Ii , for
i = 1, . . . , r − 1.

Let >lexF the POT extension in F of the lexicographic order >lex in E . Let L
be a monomial submodule of F . L is a lexicographic submodule if for all
u, v ∈ Mond(F ) with u ∈ L and v >lexF u, one has v ∈ L, for every d ≥ 1.
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Exterior Modules

Considerations

If M is a graded submodule of F , then Gin(M) (generic initial module) is a
strongly stable submodule of F with the same Hilbert function as M and,
moreover, one has that HF/M = HF/Gin(M) and βi,j(F/M) ≤ βi,j(F/Gin(M)) for
all i , j .
So we may assume M itself is a stable submodule without changing the Hilbert
function.

A generalization of Kruskal–Katona theorem

A formulation of this theorem can be done as follows:
Let M ⊂ F be a graded module. Then

β0,j(M) ≤ β0,j(M lex),

for all j .
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Exterior Modules

Example

Let Fd be the part of degree d of F = ⊕r
i=1Egi and denote by Mond(F ) the

set of all monomials of degree d of F .

Let E = K 〈e1, e2, e3〉 and F = Eg1 ⊕ Eg2, with deg g1 = 2 and deg g2 = 3,
the monomials of F , with respect to >lexF , are ordered as follows:

Mon2(F ) g1

Mon3(F ) e1g1 >lexF e2g1 >lexF e3g1 >lexF g2

Mon4(F ) e1e2g1 >lexF e1e3g1 >lexF e2e3g1 >lexF e1g2 >lexF e2g2 >lexF e3g2

Mon5(F ) e1e2e3g1 >lexF e1e2g2 >lexF e1e3g2 >lexF e2e3g2

Mon6(F ) e1e2e3g2
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Exterior Modules

Example

Let E = K 〈e1, e2, e3, e4〉 and F = ⊕3
i=1Egi with f1 = −2, f2 = −1, f3 = 1.

Consider the monomial submodule of F

M = (e1e3, e1e2e4)g1 ⊕ (e1e2, e2e4, e3e4)g2 ⊕ (e1e2e3, e2e3e4)g3.

The unique lexicographic submodule of F with the same Hilbert function of M

M lex = (e1e2, e1e3e4, e2e3e4)g1 ⊕ (e1e2, e1e3, e2e3e4)g2 ⊕ (e1e2e3, e1e2e4)g3.
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Maximal Betti numbers

Definitions

Let M ∈M, then M has a unique minimal graded free resolution over E :

F• : . . .→ F2 → F1 → F0 → M → 0,

where Fi = ⊕jE (−j)βi,j (M). The integers βi,j(M) are called the graded Betti
numbers of M.

Considerations

If M = ⊕r
i=1Iigi is an (almost) stable submodule of F , then we can use the

Aramova-Herzog-Hibi formula for computing the graded Betti numbers of M:

βk,k+`(M) =
r∑

i=1

βk, k+`(Iigi ) =
∑

u∈G(M)`

(
mF (u) + k − 1

mF (u)− 1

)
, for all k.
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Maximal Betti numbers

Considerations

Moreover, one can easily observe that

∑
u∈G(M)`

(
mF (u) + k − 1

mF (u)− 1

)
=

r∑
i=1

 ∑
u∈G(Ii )`−f`

(
m(u) + k − 1

m(u)− 1

) .
A generalization of “higher” Kruskal–Katona Theorem

Some technical results yield the following result:
Let M be a graded submodule of F . Then

βi,j(M) ≤ βi,j(M lex),

for all i , j .
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Maximal Betti numbers

Example

Let E = K 〈e1, e2, e3, e4〉 and F = ⊕3
i=1Egi , f1 = −2, f2 = −1, f3 = 1. Let

M = (e1e3, e1e2e4)g1 ⊕ (e1e2, e2e4, e3e4)g2 ⊕ (e1e2e3, e2e3e4)g3 ∈M.

We have a unique lexicographic module with the same Hilbert function of M:

M lex = (e1e2, e1e3e4, e2e3e4)g1 ⊕ (e1e2, e1e3, e2e3e4)g2 ⊕ (e1e2e3, e1e2e4)g3.

total 7 21 44 78 125 187
0 1 2 3 4 5 6
1 4 12 25 44 70 104
2 − − − − − −
3 − − − − − −
4 2 7 16 30 50 77

Betti diagram for M

total 8 26 58 108 180 278
0 1 2 3 4 5 6
1 4 13 29 54 90 139
2 1 4 10 20 35 56
3 − − − − − −
4 2 7 16 30 50 77

Betti diagram for M lex
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Graded Bass numbers

Definitions

Let M ∈M, M has a unique minimal graded injective resolution:

I• : 0→ M → I 0 → I 1 → I 2 → . . . ,

where I i = ⊕jE (n − j)µi,j (M). The integers µi,j(M) are called the graded
Bass numbers of M.

Let M∗ be the right (left) E -module HomE (M,E ). The duality between
projective and injective resolutions implies the following relation between the
graded Bass numbers of a module and the graded Betti numbers of its dual:
βi,j(M) = µi,n−j(M

∗), for all i , j .

Considerations

If rankF = 1 with f1 = 0, i.e., F = E and M = I is a graded ideal of E , then
HomE (E/I ,E ) ' 0 : I , where 0 : I is the annihilator of I . If I is a lex ideal in E ,
then 0 : I is a lex ideal in E .
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Graded Bass numbers

Considerations

Let us consider the dual module HomE (F/L,E ), where L = ⊕r
t=1Itgt is lex

submodule of F . Even though the annihilators above are lex ideals, the
submodule N = ⊕r

t=1(0 : It)gt is not a lex submodule of F . Conversely,

Ñ = (0 : I3)g1 ⊕ (0 : I2)g2 ⊕ (0 : I1)g3

is a lex submodule in F . Note that (F/L)∗ ' N ' Ñ as E–graded modules.

A generalization of dual “higher” Kruskal–Katona theorem

Let M be a graded submodule of E r , r ≥ 1. Then

µi,j(E
r/M) ≤ µi,j(E

r/M lex),

for all i , j .
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Maximal Bass numbers

Example

Let E = K 〈e1, e2, e3, e4〉 and F = E 3. Consider the monomial submodule of F :

M = (e1e3, e1e2e4)g1 ⊕ (e1e2, e2e4, e3e4)g2 ⊕ (e1e2e3, e2e3e4)g3.

We have a unique lexicographic module with the same Hilbert function of M:

M lex = (e1e2, e1e3, e1e4, e2e3)g1 ⊕ (e1e2e3, e1e2e4, e1e3e4, e2e3e4)g2 ⊕ (e1e2e3)g3.

total 3 9 23 46 80 127
0 − − − − − −
1 − 6 19 41 74 120
2 3 3 4 5 6 7

Bass diagram for F/M

total 3 12 35 74 133 216
0 − 1 4 10 20 35
1 − 8 25 54 98 160
2 3 3 6 10 15 21

Bass diagram for F/M lex
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Maximal Bass numbers

Example

Let E = K 〈e1, e2, e3, e4〉 and F = ⊕3
i=1Egi , f1 = −2, f2 = −1, f3 = 1. Let

M = (e1e3, e1e2e4)g1 ⊕ (e1e2, e2e4, e3e4)g2 ⊕ (e1e2e3, e2e3e4)g3 ∈M.

We have a unique lexicographic module with the same Hilbert function of M:

M lex = (e1e2, e1e3e4, e2e3e4)g1 ⊕ (e1e2, e1e3, e2e3e4)g2 ⊕ (e1e2e3, e1e2e4)g3.

total 3 9 23 46 80 127
0 − 6 19 41 74 120
1 3 3 4 5 6 7

Bass diagram for F/M

total 3 12 35 74 133 216
0 − 10 32 70 128 210
1 3 2 3 4 5 6

Bass diagram for F/M lex
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