Minimal resolutions of graded modules over an exterior algebra

L. Amata, M. Crupi

DEPARTMENT OF MATHEMATICAL AND COMPUTER SCIENCES, PHYSICAL AND EARTH SCIENCES, UNIVERSITY OF MESSINA lamata@unime.it, mcrupi@unime.it

APP SCIENTIFIC MEETING - I DIVISION

Introduction			
•0	0000000	0000000	00
Introduction			

- Let K be a field, $E = K \langle e_1, \dots, e_n \rangle$ the exterior algebra of a K-vector space V with basis e_1, \dots, e_n .
- It is well-known that, even if *E* is not commutative, it behaves like a commutative local ring ([Bruns and Herzog, 1996]).
- We work on the category \mathcal{M} of finitely generated \mathbb{Z} -graded left and right *E*-modules *M*.
- If M ∈ M, we denote by β_{i,j}(M) the graded Betti numbers of M and by μ_{i,j}(M) the graded Bass numbers of M, associate with projective and injective minimal resolution of M, respectively.
- Our aim is to give upper bounds for such invariants.

Introduction			
00	0000000	0000000	00
Introduction			

- Ideas and techniques used in this work generalize the ones in [Aramova et al., 1997], [Aramova et al., 1998]. In those papers, in fact, the results concern ideals of an exterior algebra.
- Given a stable ideal *I* ⊂ *E* one can deduce explicit formulas for the graded Betti numbers. These formulas allow a comparison of the graded Betti numbers of a stable ideal and its corresponding lexsegment ideal.
- Since the exterior algebra is self-dual, there exists a dual version to each of these theorems. So, one has analogous comparison of the graded Bass numbers of a stable ideal and its corresponding lexsegment ideal.
- A fundamental tool also for our pourpose is the class of lexicographic submodules. Such a class of monomial submodules has been deeply studied by the authors of this paper in [Amata and Crupi, 2018b], [Amata and Crupi, 2018c]. Some results on a particular class of graded *E*-modules has already published in [Amata and Crupi, 2018a].

	Preliminaries and notations		
00	●0000000	0000000	00
	Luchus		
Exterior A	Igebra		

- Let K be a field. We denote by E = K ⟨e₁,..., e_n⟩ the exterior algebra of a K-vector space V with basis e₁,..., e_n.
- For any subset $\sigma = \{i_1, \ldots, i_d\}$ of $\{1, \ldots, n\}$, with $i_1 < i_2 < \cdots < i_d$, we write $e_{\sigma} = e_{i_1} \land \ldots \land e_{i_d}$, and call e_{σ} a monomial of degree d. We set $e_{\sigma} = 1$, if $\sigma = \emptyset$.
- We put $fg = f \wedge g$ for any two elements f and g in E. An element $f \in E$ is called *homogeneous* of degree j if $f \in E_j$, where $E_j = \bigwedge^j V$.
- We define supp $(e_{\sigma}) = \sigma = \{j : e_j \text{ divides } e_{\sigma}\}$ and $m(e_{\sigma}) = \max\{i : i \in \text{supp}(e_{\sigma})\}$. Moreover, we set $m(e_{\sigma}) = 0$ if $e_{\sigma} = 1$.

Example

Let $E = K \langle e_1, e_2, e_3, e_4, e_5 \rangle$. If we consider the monomial $e_{\sigma} = e_1 e_2 e_4$, then $supp(e_{\sigma}) = \{1, 2, 4\}$ and $m(e_{\sigma}) = 4$.

Preliminaries and notations		
0000000	0000000	00
als		
		0000000 0000000

- If *I* is a graded ideal in *E*, then the function $H_I : \mathbb{N} \to \mathbb{N}$ given by $H_I(d) = \dim_K I_d$ $(i \ge 0)$ is called the Hilbert function of *I*.
- Let I be a monomial ideal of E. I is called stable if for each monomial $e_{\sigma} \in I$ and each $j < m(e_{\sigma})$ one has $e_j e_{\sigma \setminus \{m(e_{\sigma})\}} \in I$.
- *I* is called strongly stable if for each monomial e_σ ∈ *I* and each *j* ∈ σ one has e_ie_{σ\{j}} ∈ *I*, for all *i* < *j*.
- Let $>_{lex}$ the *lexicographic order* on the set of all monomials of degree $d \ge 1$ in E. A monomial ideal I of E is called a **lexsegment ideal** if for all monomials $u \in I$ and all monomials $v \in E$ with deg $u = \deg v$ and $v >_{lex} u$, then $v \in I$.

	Preliminaries and notations	
	0000000	
Exterior Id	احماد	

Examples

• Let $E = K \langle e_1, e_2, e_3, e_4, e_5 \rangle$. Consider the monomial ideal of E

 $I = (e_2 e_3, e_3 e_4 e_5).$

• The smallest stable ideal of *E* containing *I* is

 $ls = (e_1e_2, e_2e_3, e_1e_3e_4, e_3e_4e_5).$

• The smallest strongly stable ideal of E containing Is is

 $lss = (e_1e_2, e_1e_3, e_2e_3, e_1e_4e_5, e_2e_4e_5, e_3e_4e_5).$

• The lexicographic ideal with the same Hilbert function of I is

 $I^{\text{lex}} = (e_1 e_2, e_1 e_3 e_4).$

Preliminaries and notations	
0000000	

Exterior Ideals

Considerations

If *I* is a graded ideal of *E*, then Gin(*I*) (generic initial ideal) is a strongly stable ideal of *E* with the same Hilbert function as *I* and, moreover, one has that $H_{E/I} = H_{E/\operatorname{Gin}(I)}$ and $\beta_{i,j}(E/I) \leq \beta_{i,j}(E/\operatorname{Gin}(I))$ for all *i*, *j*. So we may assume *I* itself is a stable ideal without changing the Hilbert function.

Kruskal–Katona theorem

A formulation of this theorem can be done as follows: Let $I \subset E$ be a graded ideal. Then $\beta_{0,j}(I) \leq \beta_{0,j}(I^{\text{lex}})$, for all j.

"Higher" Kruskal–Katona theorem

Let $I \subset E$ be a graded ideal. Then $\beta_{i,j}(I) \leq \beta_{i,j}(I^{\text{lex}})$, for all i, j.

Dual "Higher" Kruskal-Katona theorem

Let $I \subset E$ be a graded ideal. Then $\mu_{i,j}(E/I) \leq \mu_{i,j}(E/I^{\text{lex}})$, for all i, j.

	Preliminaries and notations	
	0000000	
Exterior M		
	Ioquies	

- For all $M \in \mathcal{M}$, the function $H_M : \mathbb{Z} \to \mathbb{Z}$ given by $H_M(d) = \dim_{\mathcal{K}} M_d$ is called the Hilbert function of M.
- Let $F \in \mathcal{M}$ be a free module with homogeneous basis g_1, \ldots, g_r , where $\deg(g_i) = f_i$, $i = 1, \ldots, r$, with $f_1 \leq f_2 \leq \cdots \leq f_r$. Then $F = \bigoplus_{i=1}^r Eg_i$.
- $M \in \mathcal{M}$ is monomial if M is a submodule generated by monomials of F: $M = I_1 g_1 \oplus \cdots \oplus I_r g_r$, with I_i a monomial ideal of E, for each i.
- A monomial submodule $M = \bigoplus_{i=1}^{r} l_i g_i$ of F is (strongly) stable if l_i is a (strongly) stable ideal of E, for each i, and $(e_1, \ldots, e_n)^{f_{i+1}-f_i} l_{i+1} \subseteq l_i$, for $i = 1, \ldots, r-1$.
- Let $>_{lex_F}$ the POT extension in F of the *lexicographic order* $>_{lex}$ in E. Let \mathcal{L} be a monomial submodule of F. \mathcal{L} is a *lexicographic submodule* if for all $u, v \in Mon_d(F)$ with $u \in \mathcal{L}$ and $v >_{lex_F} u$, one has $v \in \mathcal{L}$, for every $d \ge 1$.

Exterior M	lodules	
	00000000	
	Preliminaries and notations	

Considerations

If *M* is a graded submodule of *F*, then Gin(*M*) (generic initial module) is a strongly stable submodule of *F* with the same Hilbert function as *M* and, moreover, one has that $H_{F/M} = H_{F/\operatorname{Gin}(M)}$ and $\beta_{i,j}(F/M) \leq \beta_{i,j}(F/\operatorname{Gin}(M))$ for all *i*, *j*.

So we may assume M itself is a stable submodule without changing the Hilbert function.

A generalization of Kruskal-Katona theorem

A formulation of this theorem can be done as follows: Let $M \subset F$ be a graded module. Then

 $\beta_{0,j}(M) \leq \beta_{0,j}(M^{\mathsf{lex}}),$

for all j.

	Preliminaries and notations		
00	00000000	0000000	00
Exterior N	lodules		

Example

- Let F_d be the part of degree d of $F = \bigoplus_{i=1}^r Eg_i$ and denote by $Mon_d(F)$ the set of all monomials of degree d of F.
- Let $E = K \langle e_1, e_2, e_3 \rangle$ and $F = Eg_1 \oplus Eg_2$, with deg $g_1 = 2$ and deg $g_2 = 3$, the monomials of F, with respect to $>_{lex_F}$, are ordered as follows:

$Mon_2(F)$	g1
$Mon_3(F)$	$e_1g_1>_{lex_F} e_2g_1>_{lex_F} e_3g_1>_{lex_F} g_2$
$Mon_4(F)$	$e_1e_2g_1 >_{lex_F} e_1e_3g_1 >_{lex_F} e_2e_3g_1 >_{lex_F} e_1g_2 >_{lex_F} e_2g_2 >_{lex_F} e_3g_2$
$Mon_5(F)$	$e_1e_2e_3g_1>_{lex_F}e_1e_2g_2>_{lex_F}e_1e_3g_2>_{lex_F}e_2e_3g_2$
$Mon_6(F)$	$e_1e_2e_3g_2$

00	0000000	0000000	00

Exterior Modules

Example

Let $E = K \langle e_1, e_2, e_3, e_4 \rangle$ and $F = \bigoplus_{i=1}^3 Eg_i$ with $f_1 = -2, f_2 = -1, f_3 = 1$. Consider the monomial submodule of F

 $M = (e_1e_3, e_1e_2e_4)g_1 \oplus (e_1e_2, e_2e_4, e_3e_4)g_2 \oplus (e_1e_2e_3, e_2e_3e_4)g_3.$

The unique lexicographic submodule of F with the same Hilbert function of M

 $M^{\mathsf{lex}} = (e_1e_2, e_1e_3e_4, e_2e_3e_4)g_1 \oplus (e_1e_2, e_1e_3, e_2e_3e_4)g_2 \oplus (e_1e_2e_3, e_1e_2e_4)g_3.$

		Main results	
00	0000000	•000000	00
Maximal F	Betti numbers		

Let $M \in \mathcal{M}$, then M has a unique minimal graded free resolution over E:

$$F_{\bullet}: \ldots \rightarrow F_2 \rightarrow F_1 \rightarrow F_0 \rightarrow M \rightarrow 0,$$

where $F_i = \bigoplus_i E(-j)^{\beta_{i,j}(M)}$. The integers $\beta_{i,j}(M)$ are called the graded Betti numbers of M.

Considerations

If $M = \bigoplus_{i=1}^{r} l_i g_i$ is an (almost) stable submodule of F, then we can use the Aramova-Herzog-Hibi formula for computing the graded Betti numbers of M:

$$\beta_{k,k+\ell}(M) = \sum_{i=1}^r \beta_{k,k+\ell}(I_i g_i) = \sum_{u \in G(M)_\ell} \binom{\mathsf{m}_F(u) + k - 1}{\mathsf{m}_F(u) - 1}, \quad \text{for all } k.$$

	Main results	
	000000	

Maximal Betti numbers

Considerations

11

Moreover, one can easily observe that

$$\sum_{e \in G(M)_{\ell}} \binom{\mathsf{m}_F(u) + k - 1}{\mathsf{m}_F(u) - 1} = \sum_{i=1}^r \left[\sum_{u \in G(I_i)_{\ell - f_{\ell}}} \binom{\mathsf{m}(u) + k - 1}{\mathsf{m}(u) - 1} \right]$$

A generalization of "higher" Kruskal-Katona Theorem

Some technical results yield the following result: Let M be a graded submodule of F. Then

 $\beta_{i,j}(M) \leq \beta_{i,j}(M^{\mathsf{lex}}),$

for all i, j.

Maximal D.	stti numbara		
00			
		000000	
	Preliminaries and notations	Main results	Bibliography

Maximal Betti numbers

Example

Let $E = K\langle e_1, e_2, e_3, e_4 \rangle$ and $F = \oplus_{i=1}^3 Eg_i$, $f_1 = -2$, $f_2 = -1$, $f_3 = 1$. Let

 $M = (e_1e_3, e_1e_2e_4)g_1 \oplus (e_1e_2, e_2e_4, e_3e_4)g_2 \oplus (e_1e_2e_3, e_2e_3e_4)g_3 \in \mathcal{M}.$

We have a unique lexicographic module with the same Hilbert function of M:

 $M^{\mathsf{lex}} = (e_1e_2, e_1e_3e_4, e_2e_3e_4)g_1 \oplus (e_1e_2, e_1e_3, e_2e_3e_4)g_2 \oplus (e_1e_2e_3, e_1e_2e_4)g_3.$

total	7	21	44	78	125	187	total	8	26	58	108	180	278
0	1	2	3	4	5	6	0	1	2	3	4	5	6
1	4	12	25	44	70	104	1	4	13	29	54	90	139
2	_	_	_	_	_	_	2	1	4	10	20	35	56
					_		3	—	_	_	_	_	_
4	2	7	16	30	50	77	4	2	7	16	30	50	77

Betti diagram for M

Betti diagram for M^{lex}

Preliminaries and notations	Main results 000●000	

Graded Bass numbers

Definitions

• Let $M \in \mathcal{M}$, M has a unique minimal graded injective resolution:

$$I_{\bullet}: 0 \to M \to I^0 \to I^1 \to I^2 \to \ldots,$$

where $I^i = \bigoplus_j E(n-j)^{\mu_{i,j}(M)}$. The integers $\mu_{i,j}(M)$ are called the graded Bass numbers of M.

• Let M^* be the right (left) *E*-module $\text{Hom}_E(M, E)$. The duality between projective and injective resolutions implies the following relation between the graded Bass numbers of a module and the graded Betti numbers of its dual: $\beta_{i,j}(M) = \mu_{i,n-j}(M^*)$, for all *i*, *j*.

Considerations

If rank F = 1 with $f_1 = 0$, *i.e.*, F = E and M = I is a graded ideal of E, then $Hom_E(E/I, E) \simeq 0$: I, where 0 : I is the annihilator of I. If I is a lex ideal in E, then 0 : I is a lex ideal in E.

Introduction 00	Preliminaries and notations	Main results 0000●00	Bibliography 00
Graded Ba	ass numbers		

Considerations

Let us consider the dual module $\operatorname{Hom}_E(F/L, E)$, where $L = \bigoplus_{t=1}^r I_t g_t$ is lex submodule of F. Even though the annihilators above are lex ideals, the submodule $N = \bigoplus_{t=1}^r (0 : I_t)g_t$ is not a lex submodule of F. Conversely,

$$\widetilde{\textit{N}}=(0:\textit{I}_3)\textit{g}_1\oplus(0:\textit{I}_2)\textit{g}_2\oplus(0:\textit{I}_1)\textit{g}_3$$

is a lex submodule in F. Note that $(F/L)^* \simeq N \simeq \tilde{N}$ as E-graded modules.

A generalization of dual "higher" Kruskal-Katona theorem

Let *M* be a graded submodule of E^r , $r \ge 1$. Then

$$\mu_{i,j}(E^r/M) \leq \mu_{i,j}(E^r/M^{\mathsf{lex}}),$$

for all i, j.

Maximal F	Bass numbers		
	0000000	0000000	
		Main results	Bibliography

Example

Let $E = K \langle e_1, e_2, e_3, e_4 \rangle$ and $F = E^3$. Consider the monomial submodule of F:

 $M = (e_1e_3, e_1e_2e_4)g_1 \oplus (e_1e_2, e_2e_4, e_3e_4)g_2 \oplus (e_1e_2e_3, e_2e_3e_4)g_3.$

We have a unique lexicographic module with the same Hilbert function of M:

 $M^{\mathsf{lex}} = (e_1e_2, e_1e_3, e_1e_4, e_2e_3)g_1 \oplus (e_1e_2e_3, e_1e_2e_4, e_1e_3e_4, e_2e_3e_4)g_2 \oplus (e_1e_2e_3)g_3.$

total							total	3	12	35	74	133	216
0	_	_	_	_	_	_	 0	—	1	4	10	20	35
1	—	6	19	41	74	120	1	—	8	25	54	98	160
2	3	3	4	5	6	7	2	3	3	6	10	15	21
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													

Maximal	Sass numbers		
00	0000000	000000	00
		Main results	

Example

Let $E = K \langle e_1, e_2, e_3, e_4 \rangle$ and $F = \bigoplus_{i=1}^3 Eg_i$, $f_1 = -2$, $f_2 = -1$, $f_3 = 1$. Let

 $M = (e_1e_3, e_1e_2e_4)g_1 \oplus (e_1e_2, e_2e_4, e_3e_4)g_2 \oplus (e_1e_2e_3, e_2e_3e_4)g_3 \in \mathcal{M}.$

We have a unique lexicographic module with the same Hilbert function of M:

 $M^{\mathsf{lex}} = (e_1e_2, e_1e_3e_4, e_2e_3e_4)g_1 \oplus (e_1e_2, e_1e_3, e_2e_3e_4)g_2 \oplus (e_1e_2e_3, e_1e_2e_4)g_3.$

total							total							
0	-	6	19	41	74	120	0	_	10	32	70	128 5	210	
1	3	3	4	5	6	7	1	3	2	3	4	5	6	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										/M ^{lex}				
					1				0					

			Bibliography
00	0000000	0000000	••
Bibliography	/		
Bibliography			

[Amata and Crupi, 2018a] Amata, L. and Crupi, M. (2018a).

Bounds for the Betti numbers of graded modules with given Hilbert function in an exterior algebra via lexicographic modules.

Bull. Math. Soc. Sci. Math. Roumanie, 61(109)(3):237–253.

[Amata and Crupi, 2018b] Amata, L. and Crupi, M. (2018b). A generalization of Kruskal–Katona's theorem. Submitted.

[Amata and Crupi, 2018c] Amata, L. and Crupi, M. (2018c). Hilbert functions of graded modules over exterior algebras: an algorithmic approach. Submitted.

[Aramova et al., 1997] Aramova, A., Herzog, J., and Hibi, T. (1997). Gotzmann theorems for exterior algebras and combinatorics. *Journal of Algebra*, 191:174–211.

Introduction	Preliminaries and notations	Main results	Bibliography
OO		0000000	●●
Bibliography	11		

[Aramova et al., 1998] Aramova, A., Herzog, J., and Hibi, T. (1998). Squarefree lexsegment ideals. *Mathematische Zeitschrift*, 228:353–378.

[Bruns and Herzog, 1996] Bruns, W. and Herzog, J. (1996). Cohen-Macaulay rings, volume 39 of Cambridge Studies in Advanced Mathematics.

Cambridge University Press, 2 edition.