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Introduction

I Computer Algebra is a subject of science devoted to methods for
solving mathematically formulated problems by symbolic algorithms,
and to implementation of these algorithms. It is based on the exact
finite representation of mathematical objects and structures, and
allows for symbolic and abstract manipulation by a computer.

I The interplay between computation and many areas of algebra is a
natural phenomenon in view of the algorithmic character of the
latter. The existence of inexpensive but powerful computational
resources has enhanced these links by the opening up of many new
areas of investigation in algebra.

I A frequent task in computational algebra is to certify that a given
object has a certain property, also providing rather elaborate
examples. Moreover, they have contributed to a new view of
algorithmic methods not only as tools, but as new objects worthy of
mathematical study. In fact an algorithmic approach to a classical
problem may lead to a significant refinement of classical structure
theory irrespective of algorithmic considerations.
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Introduction

I Extremal Betti numbers

- We implement in CoCoA[1] some algorithms in order to easy
compute graded ideals of a polynomial ring with given extremal Betti
numbers (positions as well as values).

- More precisely, we develop a package for determining the conditions
under which, given two positive integers n, r , 1 ≤ r ≤ n − 1, there
exists a graded ideal of a polynomial ring in n variables with r
extremal Betti numbers in the given position.

- An algorithm to check whether an r -tuple of positive integers
represents the admissible values of the r extremal Betti numbers is
also described.
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Introduction

I Exterior Ideals

- We introduce a Macaulay2[2] package that allows one to deal with
classes of monomial ideals over an exterior algebra E .

- More precisely, we implement some algorithms in order to easily
compute stable, strongly stable and lexsegment ideals in E .

- Moreover, an algorithm to check whether an (n + 1)-tuple
(1, h1, . . . , hn) (h1 ≤ n = dimK V ) of nonnegative integers is the
Hilbert function of a graded K–algebra of the form E/I , with I
graded ideal of E , is given.

- In particular, if HE/I is the Hilbert function of a graded K -algebra
E/I , the package is able to construct the unique lexsegment ideal I lex

such that HE/I = HE/I lex .

- Finally, an algorithm to compute all the admissible Hilbert functions
of graded K–algebras E/I , with given E , is also described.
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Extremal Betti numbers

I Let S = K [x1, . . . , xn] be the polynomial ring in n variables over a
field K .

I The extremal Betti numbers[3] of a graded ideal I of S are the
non-zero top left corners in a block of zeroes in the Macaulay
diagram of a graded free resolution of I .

k

` βk,k+`

(k3, `3)

(k2, `2)

(k1, `1)

I They are a refinement of the Castelnuovo-Mumford regularity and of
the projective dimension of the ideal I .
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Extremal Betti numbers
I A question:

Given

- two positive integers n, r , 1 ≤ r ≤ n − 1,

- r pairs of positive integers (k1, `1), . . ., (kr , `r ) such that
n − 1 ≥ k1 > k2 > · · · > kr ≥ 1, 1 ≤ `1 < `2 < · · · < `r ,

- r positive integers a1, . . . , ar ,

under which conditions does there exist a graded ideal I of S such
that βk1,k1+`1(I ) = a1, . . ., βkr ,kr+`r (I ) = ar are its extremal Betti
numbers?

I A positive answer:

- has been given in [4] and [5], when K is a field of characteristic zero,

- the generic initial ideal, with respect to the graded reverse
lexicographic order, of a graded ideal I of S is a strongly stable ideal,

- the extremal Betti numbers of I , as well as their positions, are
preserved by passing from I to his generic initial ideal.

- Hence the problem can be reformulated in terms of strongly stable
ideals.
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Theorem[6]
Given two positive integers n, r , r pairs (k1, `1), (k2, `2), . . . , (kr , `r ) and
r positive integers a1, a2, . . . , ar respecting the previous hypothesis and
let K be a field of characteristic 0, then the following conditions are
equivalent:

- there exists a strongly stable ideal I ( S , with extremal Betti
numbers βki ,ki+`i (I ) = ai , for i = 1, . . . , r ;

- set t = max{i : `i ≤ r − i}. The integers ai satisfy the conditions:

1 ≤ ai ≤ |Ai \ LexShad`i−`i−1(Ai−1)|, for i = 1, . . . , r ,

where A0 = ∅,
(i) A1 = {u ∈ A(k1, `1) : u ≥lex xkr−1xk1+1}, whenever `1 = 2;
(ii) Ai = {u ∈ A(ki , `i ) : u ≥lex xkr xkr−1 · · · xkr−`i+3xkr−`i+2−1xki+1}, for

i = 1, . . . , t, whenever `1 ≥ 3, and for i = 2, . . . , t, whenever `1 = 2;
(iii) Ai = {u ∈ A(ki , `i ) : u ≥lex xkr xkr−1 · · · xki+1x

`i−(r−i)
ki+1 }, for

i = t + 1, . . . , r − 1;
(iv) Ar = {u ∈ A(kr , `r ) : u ≥lex x

`r
kr+1},

and if ai = |[u, v ]|, with u, v ∈ Ai , then 1 ≤ ai+1

≤ |Ai+1 \ LexShad`i+1−`i ([u, v ])|, for all i = 1, . . . r − 1,

with 2 < r ≤ n − 2 (it has to be n ≥ 5), kr ≥ 2, whenever `1 = 2, and
1 ≤ r ≤ n − 1, kr ≥ 1, whenever `1 ≥ 3.
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A CoCoa5 example

/* */ use R::=QQ[x[1..7]];

/* */ Corners:=[[5,3],[4,4],[3,5],[1,7]];

/* */ a:=[1,2,5,1];

/* */ I:=StronglyStableIdealEB(R,Corners,a,1);

Strongly Stable Ideals has been computed:

Generators: [x[1]^3, x[1]^2*x[2], x[1]^2*x[3], x[1]^2*x[4], x[1]^2*x[5], x[1]^2*x[6],
x[1]*x[2]^3, x[1]*x[2]^2*x[3], x[1]*x[2]^2*x[4], x[1]*x[2]^2*x[5], x[1]*x[2]*x[3]^2,
x[1]*x[2]*x[3]*x[4], x[1]*x[2]*x[3]*x[5], x[1]*x[2]*x[4]^3, x[1]*x[3]^4,
x[1]*x[3]^3*x[4], x[1]*x[3]^2*x[4]^2, x[1]*x[3]*x[4]^3, x[1]*x[4]^4, x[2]^7]

Borel Generators: [x[1]^2*x[6], x[1]*x[2]*x[3]*x[5], x[1]*x[4]^4, x[2]^7]
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A CoCoa5 example

Piecewise Components:

L 1=[x[1]^3, x[1]^2*x[2], x[1]^2*x[3], x[1]^2*x[4], x[1]^2*x[5], x[1]^2*x[6]]

L 2=[x[1]^4, x[1]^3*x[2], x[1]^3*x[3], x[1]^3*x[4], x[1]^3*x[5], x[1]^2*x[2]^2,
x[1]^2*x[2]*x[3], x[1]^2*x[2]*x[4], x[1]^2*x[2]*x[5], x[1]^2*x[3]^2, x[1]^2*x[3]*x[4],
x[1]^2*x[3]*x[5], x[1]^2*x[4]^2, x[1]^2*x[4]*x[5], x[1]^2*x[5]^2, x[1]*x[2]^3,
x[1]*x[2]^2*x[3], x[1]*x[2]^2*x[4], x[1]*x[2]^2*x[5], x[1]*x[2]*x[3]^2,
x[1]*x[2]*x[3]*x[4], x[1]*x[2]*x[3]*x[5]]

L 3=[x[1]^5, x[1]^4*x[2], x[1]^4*x[3], x[1]^4*x[4], x[1]^3*x[2]^2, x[1]^3*x[2]*x[3],
x[1]^3*x[2]*x[4], x[1]^3*x[3]^2, x[1]^3*x[3]*x[4], x[1]^3*x[4]^2, x[1]^2*x[2]^3,
x[1]^2*x[2]^2*x[3], x[1]^2*x[2]^2*x[4], x[1]^2*x[2]*x[3]^2, x[1]^2*x[2]*x[3]*x[4],
x[1]^2*x[2]*x[4]^2, x[1]^2*x[3]^3, x[1]^2*x[3]^2*x[4], x[1]^2*x[3]*x[4]^2,
x[1]^2*x[4]^3, x[1]*x[2]^4, x[1]*x[2]^3*x[3], x[1]*x[2]^3*x[4], x[1]*x[2]^2*x[3]^2,
x[1]*x[2]^2*x[3]*x[4], x[1]*x[2]^2*x[4]^2, x[1]*x[2]*x[3]^3, x[1]*x[2]*x[3]^2*x[4],
x[1]*x[2]*x[3]*x[4]^2, x[1]*x[2]*x[4]^3, x[1]*x[3]^4, x[1]*x[3]^3*x[4],
x[1]*x[3]^2*x[4]^2, x[1]*x[3]*x[4]^3, x[1]*x[4]^4]

L 4=[x[1]^7, x[1]^6*x[2], x[1]^5*x[2]^2, x[1]^4*x[2]^3, x[1]^3*x[2]^4, x[1]^2*x[2]^5,
x[1]*x[2]^6, x[2]^7]
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A CoCoa5 example

/* */ IsStronglyStable(I);

true

/* */ IsLexSegment(I);

false

/* */ PrintRes(I);

0 --> R[-8] --> R[-7]^6(+)R[-8]^2 --> R[-6]^15(+)R[-7]^10(+)R[-8]^5 -->
R[-5]^20(+)R[-6]^20(+)R[-7]^16 --> R[-4]^15(+)R[-5]^19(+)R[-6]^17(+)R[-8] -->
R[-3]^6(+)R[-4]^7(+)R[-5]^6(+)R[-7]

/* */ PrintBettiDiagram(I);

0 1 2 3 4 5
3: 6 15 20 15 6 1
4: 7 19 20 10 2 -
5: 6 17 16 5 - -
6: - - - - - -
7: 1 1 - - - -

Tot: 20 52 56 30 8 1 /* */
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A CoCoa5 example

/* */ use R::=QQ[x[1..7]];

/* */ Corners:=[[5,3],[4,4],[3,5],[1,7]];

/* */ av:=AdmissibleValues(R,Corners);

/* */ av;

/* */ matrix(QQ,
[[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2],
[1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 6, 7, 1, 1, 2, 3],
[1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 1, 1, 1, 2, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]])

/* */
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Exterior Ideals

I Let K be a field. We denote by E = K 〈e1, . . . , en〉 the exterior
algebra of a K -vector space V with basis e1, . . . , en.

- For any subset σ = {i1, . . . , id} of {1, . . . , n}, with i1 < i2 < · · · < id ,
we write eσ = ei1 ∧ . . .∧ eid , and call eσ a monomial of degree d . We
set eσ = 1, if σ = ∅.

- We define supp(eσ) = σ = {j : ej divides eσ} and
m(eσ) = max{i : i ∈ supp(eσ)}. Moreover, we set m(eσ) = 0 if
eσ = 1.

- If I is a graded ideal in E , then the function HI : N→ N given by
HI (d) = dimK Id (i ≥ 0) is called the Hilbert function of I .

I Let I be a monomial ideal of E . I is called stable if for each
monomial eσ ∈ I and each j < m(eσ) one has ejeσ\{m(eσ)} ∈ I .

I I is called strongly stable if for each monomial eσ ∈ I and each j ∈ σ
one has eieσ\{j} ∈ I , for all i < j .
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Exterior Ideals

I Let >lex the lexicographic order on the set of all monomials of
degree d ≥ 1 in E . A monomial ideal I of E is called a lexsegment
ideal (lex ideal, for short) if for all monomials u ∈ I and all
monomials v ∈ E with deg u = deg v and v >lex u, then v ∈ I .

I Let a and i be two positive integers. Then a has the unique i-th
Macaulay expansion a =

(
ai
i

)
+
(
ai−1

i−1
)

+ · · ·+
(
aj
j

)
with

ai > ai−1 > · · · aj ≥ j ≥ 1.

I We define a(i) =
(

ai
i+1

)
+
(
ai−1

i

)
+ · · ·+

(
aj
j+1

)
.

We also set 0(i) = 0 for all i ≥ 1.
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Exterior Ideals

Thm Let (h1, . . . , hn) be a sequence of nonnegative integers. Then the
following conditions are equivalent:

(a) 1 +
∑n

i=1 hi t
i is the Hilbert series of a graded K–algebra E/I ;

(b) 0 < hi+1 ≤ h
(i)
i , 0 < i ≤ n − 1.

This theorem is known as the Kruskal–Katona theorem.

I If (1, h1, . . . , hn) is a sequence of nonnegative integers such that

(i) h1 ≤ n,

(ii) 0 < hi+1 ≤ h
(i)
i , 0 < i ≤ n − 1,

then there exists[7] a unique lex ideal I of an exterior algebra E with
n generators over a field K such that HE/I (d) = hd (d = 0, . . . , n).

I The sequence (1, h1, . . . , hn) is called the Hilbert sequence of E/I .
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A Macaulay2 example

i1 : loadPackage "ExteriorIdeals"

i2 : E=QQ[e 1..e 5,SkewCommutative=>true]

i3 : I=ideal {e 2*e 3,e 3*e 4*e 5}
o3 = ideal (e e , e e e )

2 3 3 4 5
o3 : Ideal of E

i4 : Is=stableIdeal I

o4 = ideal (e e , e e e , e e , e e e )
1 2 1 3 4 2 3 3 4 5

o4 : Ideal of E

i5 : Iss=stronglyStableIdeal Is

o5 = ideal (e e , e e , e e e , e e , e e e , e e e )
1 2 1 3 1 4 5 2 3 2 4 5 3 4 5

o5 : Ideal of E

i6 : isStronglyStableIdeal Iss

o6 = true
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A Macaulay2 example

i1 : E=QQ[e 1..e 5,SkewCommutative=>true]

i2 : isHilbertSequence({0,4,3,0,0,0},E)
o2 : false

i3 : lexIdeal({1,6,3,0,0,0,0},E)
stdio:24:1:(3): error: expected a Hilbert sequence

i4 : lexIdeal({1,4,4},E)
o4 = ideal (e , e e , e e , e e e )

1 2 3 2 4 3 4 5
o4 : Ideal of E
i5 : lexIdeal({1,5,7,4,0,0},E)
o5 = ideal (e e , e e , e e , e e e e )

1 2 1 3 1 4 2 3 4 5
o5 : Ideal of E

i6 : I=ideal {e 2*e 3,e 2*e 4,e 2*e 5,e 1*e 3*e 4*e 5}
o6 = ideal (e e , e e , e e , e e e e )

2 3 2 4 2 5 1 3 4 5
o6 : Ideal of E

i7 : hilbertSequence I
o7 = {1, 5, 7, 4, 0, 0}
o7 : List
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A Macaulay2 example

i1 : E=QQ[e 1..e 4,SkewCommutative=>true]

i2 : hilbSeqs=allHilbertSequences(E)

o2 : {{1,4,6,4,1}, {1,4,6,4,0}, {1,4,6,3,0}, {1,4,6,2,0}, {1,4,6,1,0},
-----------------------------------------------------------------
{1,4,6,0,0}, {1,4,5,2,0}, {1,4,5,1,0}, {1,4,5,0,0}, {1,4,4,1,0},
-----------------------------------------------------------------
{1,4,4,0,0}, {1,4,3,1,0}, {1,4,3,0,0}, {1,4,2,0,0}, {1,4,1,0,0},
-----------------------------------------------------------------
{1,4,0,0,0}, {1,3,3,1,0}, {1,3,3,0,0}, {1,3,2,0,0}, {1,3,1,0,0},
-----------------------------------------------------------------
{1,3,0,0,0}, {1,2,1,0,0}, {1,2,0,0,0}, {1,1,0,0,0}, {1,0,0,0,0}}

o2 : List

i3 : transpose matrix hilbSeqs

o3 = | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
| 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 2 2 1 0 |
| 6 6 6 6 6 6 5 5 5 4 4 3 3 2 1 0 3 3 2 1 0 1 0 0 0 |
| 4 4 3 2 1 0 2 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 |
| 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |

5 25
o3 : Matrix ZZ <--- ZZ
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Next steps

I It would be interesting to implement a Macaulay2 package to
compute graded modules with given extremal Betti numbers[8].

I It would be useful to implement a Macaulay2 package for monomial
modules over an exterior algebra. More precisely, we would like to
implement some algorithms to compute stable, strongly stable,
lexsegment submodules in E and to classify the Hilbert functions of
quotients of E . This problem is currently under investigation.
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LexShadow
I For u, v ∈ Mond(S), u ≥lex v , define the set

L(u, v) = {z ∈ Mond(S) : u ≥lex z ≥lex v}.

I We denote by min(M) the smallest monomial of M respect to ≥lex.
Setting w = min(M), if ` > d is an integer, we define the set of
monomials of degree ` in S called the lexicographic shadow ofM as:

LexShad`−d(M) = L(x`1 ,wx
`−d
n ).

I Given two positive integers k , d , with 1 ≤ k < n and d ≥ 2, we
define the following set of monomials:

A(k , d) = {u ∈ Mond(S) : m(u) = k + 1}.

I If u, v , u ≥lex v , are two monomials of A(k , d), we will denote by
[u, v ] the subset of A(k , d) defined as follows:

[u, v ] = {w ∈ A(k , d) : u ≥lex w ≥lex v}.

Theorem
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